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Gas-phase optimization of single biological molecules and of small active-site biological models has become
a standard approach in first principles computational enzymology. The important role played by the surrounding
environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy
calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant
with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by
comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and
considering different dielectric constants) for a representative data set of 20 very important biological
moleculessthe 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard
amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in
fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations,
providing a good description of bond lengths and angles for typical biological molecules, even for charged
amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation
state of the biological molecule could be reasonably described in vacuum, a requirement that was already
necessary in first principles computational enzymology.

Introduction

The environment plays a vital role in the large plethora of
biochemical phenomena, and its effect is often essential for a
correct atomistic description of molecular biological systems
and for an accurate determination of many of the properties
associated. In particular, water, the biological solvent of choice
and the most profuse constituent of living organisms, plays a
particularly important role in biological processes. The inclusion
of the effect of the solvent in computational models is
particularly challenging, although several methods able to
represent molecules in solution, at different levels of sophisti-
fication, have been developed.1-5 The level of detail used to
describe the chemical system, the physical rules underlying the
process of interest, and the mathematical formulas employed
in describing these rules are among the various features that
distinguish between the different alternatives available.2 While
gas-phase predictions can render faster and very accurate results
for some chemical processes and molecular properties, there is
a whole range of phenomena and molecular features that cannot
be accurately addressed by such means. In these cases, the
influence of the solvent has to be accounted for.

The polarizable continuum model (PCM) has become during
the past decades a strong and widely applied alternative in the
gamut of available computational methodologies.6 PCM methods
allow the inclusion of the effect of the solvent in standard ab
initio or density functional theory (DFT) calculations, by
modeling the solvent as a polarizable continuum dielectric with
a specific constant instead of using individual molecules. Over
the years, PCM has been successfully applied in the determi-
nation of geometries and of a wide range of molecular properties
in the study of reaction mechanisms and spectroscopic phe-

nomena (for reviews on this topic please see refs 1, 2, 7, and
8). Nevertheless, and despite the immense computational
improvement that has characterized these years, for many
applications in computational chemistry and biochemistry, its
use is often avoided, particularly for geometry optimization.

The geometry of a molecule determines many of the physical
and chemical properties associated with it. In computational
chemistry, geometry optimization is used to find the structure
of the minima on a potential energy surface, with these minimum
energy structures representing equilibrium states. In addition,
geometry optimization is also employed in locating transition
state structures, which are saddle points on the potential energy
surface. During this process the energy of molecules is reduced
by adjusting atomic coordinates, yielding optimal bond lengths,
bond angles, and dihedrals. High accuracy in determining these
values is of great importance in the computational simulation
of biological processes as experimental information on such
quantities is often scarce and difficult to obtain. Geometry
optimizations are therefore a critical component in the wide
plethora of computational chemistry applications, as most of
these applications are essentially based on the characterization
of stationary states. Geometry optimizations with PCM typically
involve a higher computational cost (in terms of CPU time) by
optimization cycle than gas-phase calculations do. In addition,
geometry convergence is normally more difficult to achieve,
due to the decreased steepness of the potential energy surfaces.

It is important to take into consideration that, in general, the
energy of a molecular system has a rather slow dependence on
the particular geometric parameters that define a given confor-
mation. In fact, energetic differences between conformers
optimized with several different combinations method/basis set
calculated with a single point energy calculation with a single
method/basis set will typically vary much less than the differ-
ences arising from using single point energy calculations with
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different methods/basis set on conformers optimized with a
unique combination method/basis set. This fact, together with
the difficulties outlined above cause the influence of the
environment in geometries to be frequently only included at a
subsequent stage, through PCM energy calculations performed
on the gas-phase-optimized geometries. In fact, the application
of higher-level single point energy calculations with PCM
(typically with a dielectric constant of around 4 for an enzymatic
reaction or of 80 for a reaction in water) in gas-phase geometries
is still the standard approach in first principles quantum
mechanical computational enzymology,9-11 continuing to pro-
vide highly valuable insights into the catalytic mechanism of
many important enzymes. Recent notable examples include the
molybdoenzyme formate dehydrogenase,12 haloalcohol deha-
logenase,13 the [NiFe] and [FeFe] hydrogenases,14 the apocaro-
tenoid oxygenase,15 glutaminyl cyclase,16 the prostatic acid
phosphatase,17 the farnesyltransferase,18-22 the dinuclear zinc
enzyme dihydroorotase,23 and several more general Zn biological
systems.24,25

The big question that arises from the use of this approximation
is how large an error are we introducing by admitting that the
gas-phase geometries are a reasonable alternative to a description
that includes the effect of the solvent in geometry optimization?
Logically, the answer will depend on the particular molecule
or biological system that one is studying; but is there an intrinsic
systematic error for typical biological molecules in this ap-
proximation? Is there a significant gain that could be obtained
by optimizing the geometries in a continuum environment? To
address these questions we have chosen a standard first
principles quantum mechanical method and a commonly used
basis set for geometry optimization to evaluate the differences
in the optimized bond lengths and angles that could be obtained
by optimizing the geometry of a data set of typical individual
molecules of high biological significance in the gas phase and
with a polarizable continuum model with dielectric constants
of 4 (protein) and 80 (water), for three different PCM methods.
An unsuspected data set comprising the 20 natural amino acid
residues in their most stable protonation states at pH 7 was
chosen for this effect. This selection of molecules ensured a
structurally balanced, chemically diverse, biologically repre-
sentative, and most of all unbiased choice of test cases,
illustrative of the type of chemical bonds and angles normally
present in the quantum mechanical models employed in
computational enzymology.

The results show that the gain in accuracy in the determination
of bond lengths and angles for single biological molecules by
optimizing the geometries with PCM methods can be in general
quite small, compared with the computational cost associated,
particularly if the protonation state of the biological molecule
could be reasonably attributed in vacuum.

Computational Methods

The standard approach in quantum-mechanical computational
enzymology for the determination of molecular geometries of
standard biological molecules is the optimization of the geom-
etries in vacuum, with the introduction of the effect of the
environment only in a single-point energy calculation with an
appropriate continuum solvation model and dielectric constant
at a later stage.9-11 The purpose of this study was to evaluate
the gain, in terms of accuracy, that might be obtained in the
determination of geometries for such molecules when perform-
ing the corresponding geometry optimizations while using a
continuum solvation model instead of the gas-phase optimizations.

Calculations were carried out using the Gaussian 03 suite of
programs.26 Three commonly available continuum solvation

methods were considered. These were the Polarizable Conductor
Continuum model (C-PCM),27,28 the Integral-Equation-Formal-
ism Polarizable Continuum Model (IEF-PCM),8,29-31 and the
Self-Consistent Isodensity Polarizable Continuum Model (SCI-
PCM),32 which perform an SCRF calculation using a cavity
determined self-consistently from an isodensity surface (standard
value of 0.0004 a.u. for the isodensity used). Geometry
optimizations at the B3LYP/6-31+G(d,p) level of theory were
performed with each one of these three solvation methods in
both water (ε ) 78.39) and protein (ε ) 4.335). Final optimized
geometries were compared with the reference geometries and
with the gas-phase geometries optimized at the same level of
theory. The popular density functional B3LYP was chosen as
it still remains today the most widely used alternative for
standard DFT calculations.33 The 6-31+G(d,p) is also a common
choice for geometry optimization in general organic chemistry.

The choice to perform such calculations also in the protein
environment was made taking into consideration that the use
of a dielectric constant of around 4 is normally taken as an
approximation to the effect of the global enzyme environment
on a reaction, generally giving a good agreement with experi-
mental results, and accounting for the average effect of both
the protein and buried water molecules.34-36

The data set considered in these calculations comprised the
20 natural amino acids normally present in proteins, in their
most stable protonation states at pH 7, as they represent a very
structurally diverse and biologically important set of molecules,
typically present in quantum mechanical computational enzy-
mology models. High-quality reference values for the geometries
of these molecules were taken from the Cambridge Structural
Database (CSD)37 and chosen from the alternatives with the
lowest R-values. Details are presented in Table 1. The reader
should however be aware that comparing equilibrium structures
in the gas phase or in continuum with thermally averaged
crystallographic structures is by itself an approximation and has
a certain degree of error associated. However, it should be
noticed, that the standard procedure in quantum mechanical
computational enzymology also involves comparing the struc-
tures obtained for reaction minima or transition states with X-ray
or NMR structures of the corresponding enzymes and closest
states in the Protein Data Bank.38 Hence, the protocol followed

TABLE 1: Experimental Reference Structures for the 20
Amino Acids Considered in This Study, with Indication of
the Corresponding R Factor Value and Original Reference

amino acid R factor ref

alanine 0.0203 39
arginine 0.0349 40
asparagine 0.175 41
aspartic acid 0.0106 42
cysteine 0.0375 43
glutamic acid 0.026 44
glutamine 0.043 45
glycine 0.0129 46
histidine 0.0296 47
isoleucine 0.040 48
leucine 0.058 49
lysine 0.0333 50
methionine 0.084 51
phenylalanine 0.084 52
proline 0.0208 53
serine 0.020 54
threonine 0.094 55
tryptophan 0.088 56
tyrosine 0.026 57
valine 0.0435 58

14232 J. Phys. Chem. A, Vol. 113, No. 52, 2009 Sousa et al.



for this data set of high-quality amino acid structures reproduces
to a significant extent the approach normally used in first
principles computational enzymology.

Results and Discussion

To evaluate the ability of the different approaches in geometry
optimization for the data set considered, the bond lengths and
angles of the resulting structures were compared with the
corresponding reference values in the structures from the
Cambridge Structural Database37 (Table 1). The mean signed
error (MSE) and the mean unsigned error (MUE) were used in
this regard. The MSE is taken as the difference between the
values calculated with the approach tested and the correspondent
values reported in the CSD structures. A negative MSE indicates
that the application of given methodology to the type of systems
considered underestimates the value of a given parameter (in
this case, bond lengths and angles), whereas a positive MSE
indicates that the value is overestimated. The mean unsigned
error (MUE) is the module of the difference between the value
calculated for a given geometric parameter and the value
reported in the CSD structure. The MUE gives an indication of
the accuracy of the approach tested in calculating the geometric
parameters indicated for the systems considered. Table 2
presents an overview of the mean unsigned error (MUE) and
mean signed error (MSE) calculated for all the bond lengths
and angles present in the 20 natural amino acids in the gas phase
and with the three PCM methods tested for dielectric constants
of 78.39 (water) and 4.335 (protein).

The results were grouped into three data sets. The first data
set (BL1) is a blind database of the 323 amino acid bond lengths
evaluated in this study. BL2 is a data set of 279 amino acid
bond lengths selected from BL1 by removing all the bond
lengths associated to the charged amino acid NH3

+ terminus.
This second data set was prepared from the first, because all
the amino acids considered in this study and the corresponding
experimental reference structures are for the zwitterionic state,
i.e., with charged NH3

+ and COO-. This is certainly not a
reasonable protonation state for the gas phase. Gas-phase
optimizations of an amino acid residue in the zwitterionic state
typically results in an H+ transfer from the NH3

+ group to the
COO- group. The distance of this proton to the initial N-
terminus almost doubles, increasing the error associated to the
gas-phase description in comparison to the description based
in the use of a continuum model. BL2 was therefore prepared
to ensure a fairer comparison of the gas-phase description with
the remaining alternatives, taking into consideration that the use
of gas-phase-optimized geometries of biological molecules as
an alternative to a continuum description is only attempted when
a coherent gas-phase protonation state can be attributed. Finally,
the third data setsAAscomprises all the 469 bond angles
present in the amino acid molecules evaluated.

The results show that all the methods tested tend to
overestimate the experimental bond lengths, particularly the gas-
phase optimizations in the BL1 data set, a feature that can be
attributed to the proton transfer from the NH3

+ group to the
COO- taking place during the optimization in the gas phase.
An important observation concerns the SCI-PCM method. With
this methodology, optimized geometries were only obtained for
the smallest amino acid, glycine. All the other geometry
optimizations with this method systematically failed, while the
optimization with the C-PCM and IEF-PCM methods was
successful for all the amino acids. In addition, for glycine the
computational cost associated to the SCI-PCM approach was
much higher than the one associated to the C-PCM and IEF-
PCM models (for example in water SCI-PCM calculation were
8 times longer), with the resulting optimized geometry display-
ing higher MUE and MSE values than the alternative methods
for this particular amino acid residue (data not shown).

Table 2 further shows that the gas-phase optimizations
resulted in a MUE of 0.077 Å for the BL1 data set, whereas
MUEs of 0.037 Å were obtained for both C-PCM and IEF-
PCM in water. The same methods in the protein environment
gave MUEs of 0.041 Å. These results show that even with
unreasonable gas-phase protonation states affecting the bond
lengths included in the data set, gas-phase optimizations provide
a very reasonable approximation to the C-PCM and IEF-PCM
optimization, particularly if these optimizations were to be
performed in a protein environment (MUEs of 0.077 Å in the
gas phase against 0.041 Å in the protein environment), as it
would probably be the case in first principles computational
enzymology, for which a dielectric constant of 4 is generally
taken as an approximation to the global effect of the enzyme
and buried water molecules.

For the more reasonable bond lengths data set (BL2, 279 bond
lengths), which is expected to reflect better the type of models
and molecules used in standard computational enzymology, as
in such models the saturation of the N- and C-terminus is
normally preferred, the MUE obtained for the gas phase was
of 0.040 Å, while MUEs of 0.038 and 0.035 Å were obtained
with both C-PCM and IEF-PCM for the protein environment
and water, respectively. These differences are remarkably small
(only 0.002 Å difference between protein environment optimi-
zations and gas-phase calculations), showing how strong an
approximation of gas-phase optimizations can be. For the data
set of 469 amino acid bond angles, MUEs of 3.32, 2.55, and
2.02° were obtained for the gas-phase, protein, and water
optimization, respectively, once again with C-PCM and IEF-
PCM exhibiting very similar performance.

Table 3 presents the MUEs for the BL2 bond-length and AA
bond-angles data set by type of amino acid. The purpose of
this analysis was to determine how the success of this ap-
proximation could vary between polar and nonpolar molecules

TABLE 2: Overview of the Mean Unsigned Error (MUE) and Mean Signed Error (MSE) Calculated for the Three Data Sets
Considered in This Study: BL1 (all bond lengths); BL2 (all bond lengths except the ones associated to the amino acid charged
NH3 terminus); AA (all angles)

water (ε ) 78.39) protein (ε ) 4.335)

data sets error type gas phase C-PCM IEF-PCM SCI-PCMa C-PCM IEF-PCM SCI-PCMa

bond lengths BL1 (Å) MUE 0.077 0.037 0.037 0.014 0.041 0.041 0.022
MSE 0.065 0.030 0.030 0.007 0.033 0.033 0.012

bond lengths BL2 (Å) MUE 0.040 0.035 0.035 0.014 0.038 0.038 0.018
MSE 0.027 0.029 0.029 0.010 0.031 0.031 0.011

angles AA (deg) MUE 3.32 2.02 2.02 2.99 2.47 2.55 4.03
MSE -0.11 -0.03 -0.03 -1.00 -0.11 -0.12 -1.62

a With the SCI-PCM method, optimized geometries could only be obtained for Gly.
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and between charged and noncharged compounds. For the 138
bond lengths present in polar amino acids, a MUE of 0.034 Å
was obtained for the structures optimized in the gas phase.
C-PCM and IEF-PCM gave MUEs of 0.029 Å in water, while
in the protein environment model (ε ) 4) values of 0.034 and
0.032 Å were obtained. So once again, the accuracy of gas-
phase optimizations and PCM optimizations in the protein
environment is shown to be quite similar. The same general
trends were obtained for the data set of 246 bond angles in polar
amino acid residues, with the gas-phase optimization showing
a MUE of 3.21°, against 2.03° in water with both C-PCM and
IEF-PCM, and 2.47° (C-PCM) and 2.52° (IEF-PCM) in protein.

In nonpolar amino acids, a very similar general trend between
the MUE calculated in vacuum, protein, and water was obtained.
While the MUE values obtained for the bonds and angles present
in this type of amino acids are higher than those calculated for
the polar amino acids, the relative differences between the MUEs
in the gas-phase optimizations and in continuum optimizations
is now smaller. Very similar trends and values, albeit with a
higher number of bonds and angles, were obtained for the
noncharged amino acids (i.e., all with the exception of Arg,
Asp, Glu, Lys).

For the group of bond lengths and angles present in charged
amino acid residues (67 bonds and 130 angles), the relative

difference between a gas-phase description and a continuum
description was the highest in the test (0.007 Å difference in
relation to a 0.013 IEF-PCM protein MUE). Nevertheless, the
accuracy of gas-phase optimizations in terms of bonds lengths
and angles was quite good, with MUEs of 0.020 Å and 2.96°.
These results show that the use of gas-phase-optimized geom-
etries of biological molecules as an approximation to geometries
optimized in the presence of a continuum dielectric can work
pretty well, not only for nonpolar and noncharged amino acids
but also for the polar and charged molecules in the data set
considered.

With Table 4 and Table 5 we try to see how this approxima-
tion works for different types of bonds. Table 4 and Table 5
present respectively the MSEs and MUEs calculated for the set
of 20 natural amino acids considered in this study, by bond
type. From Table 4 it is evident that with the exception of the
C-N and O-H bonds in the gas phase, the bond lengths of all
other bond types are typically overestimated. C-C bonds are
typically overestimated by all methods tested by ca. 0.01 Å,
while in N-H (BL2) this value is typically around 0.03 Å. For
C-H all methods tend to overestimate bond lengths by
something like 0.06 Å.

Table 5 shows that the gas-phase optimizations provided a
very good approximation to a continuum description for C-C,

TABLE 3: Overview of the Mean Unsigned Error (MUE) for the BL2 Bond-Length Data Set and AA Bond-Angle Data Set
Grouped by Type of Amino Acid

water (ε ) 78.39) protein (ε ) 4.335)
by amino
acid type property

no. of
cases

gas
phase C-PCM IEF-PCM SCI-PCMa IEF-PCM C-PCM SCI-PCMa

polar bond lengths (Å) 138 0.034 0.029 0.029 0.034 0.032
angles (deg) 246 3.21 2.03 2.03 2.47 2.52

nonpolar bond lengths (Å) 141 0.046 0.041 0.041 0.014 0.043 0.043 0.018
angles (deg) 223 3.44 2.00 2.01 2.99 2.47 2.56 4.03

charged bond lengths (Å) 67 0.020 0.015 0.015 0.020 0.013
angles (deg) 130 2.96 1.86 1.84 2.27 2.22

noncharged bond lengths (Å) 212 0.046 0.041 0.041 0.014 0.042 0.042 0.018
angles (deg) 339 3.46 2.08 2.08 2.99 2.53 2.62 4.03

a With the SCI-PCM method optimized geometries could only be obtained for Gly.

TABLE 4: Mean Signed Error (MSE) for the Bond Lengths in the 20 Natural Amino Acid Residues by Bond Type

water (ε ) 78.39) protein (ε ) 4.335)
by amino
acid type

no. of
cases

gas
phase C-PCM IEF-PCM SCI-PCMa C-PCM IEF-PCM SCI-PCMa

C-C 88 0.011 0.011 0.011 0.031 0.013 0.013 0.038
C-N 32 -0.006 0.015 0.015 0.021 0.018 0.017 0.021
C-O 48 0.018 0.006 0.006 0.000 0.005 0.005 -0.001
C-S 3 0.030 0.031 0.031 0.032 0.032
C-H 92 0.061 0.062 0.062 0.004 0.067 0.066 0.004
N-H (BL1) 58 0.233 0.038 0.038 0.003 0.046 0.045 0.015
N-H (BL2) 14 0.021 0.032 0.031 0.039 0.028
O-H 2 -0.004 0.016 0.016 0.010 0.008

a With the SCI-PCM method, optimized geometries could only be obtained for Gly.

TABLE 5: Mean Unsigned Error (MUE) for the Bond Lengths in the 20 Natural Amino Acid Residues by Bond Type

water (ε ) 78.39) protein (ε ) 4.335)
by amino
acid type

no. of
cases

gas
phase C-PCM IEF-PCM SCI-PCMa C-PCM IEF-PCM SCI-PCMa

C-C 88 0.015 0.016 0.016 0.031 0.019 0.018 0.038
C-N 32 0.016 0.021 0.021 0.021 0.022 0.023 0.021
C-O 48 0.056 0.023 0.023 0.011 0.025 0.025 0.020
C-S 3 0.030 0.031 0.031 0.032 0.032
C-H 92 0.063 0.063 0.063 0.005 0.069 0.067 0.005
N-H (BL1) 58 0.248 0.047 0.047 0.015 0.056 0.056 0.029
N-H (BL2) 14 0.042 0.043 0.043 0.052 0.042
O-H 2 0.011 0.016 0.016 0.011 0.011

a With the SCI-PCM method, optimized geometries could only be obtained for Gly.
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C-N, C-S, C-H, O-H, and N-H (for coherent protonation
states) bond types. For C-O bonds however, more significant
differences were obtained, with the gas-phase optimization
resulting in a MUE of 0.056 Å, while the continuum optimiza-
tion in water and protein resulted in MUEs of only 0.031 and
0.032 Å. A possible explanation for the increased bond lengths
verified in the gas phase for the C-O bonds is the existence of
intramolecular hydrogen bonds. In gas-phase optimizations, the
importance and energetic impact of possible intramolecular
hydrogen bonds is very large. The intramolecular hydrogen
bonds formed with the carbonyl oxygen atom often decrease
the C-O bond strength and lead to increased C-O bond lengths.
However, continuum optimizations typically stabilize much
more the groups that could participate in such intramolecular
hydrogen bonds, decreasing the importance of these interactions
in the final optimized geometry and therefore yielding shorter
and stronger C-O bond lengths. In this regard, the continuum
optimizations performed in water (ε ) 80) are typically more
effective than the continuum optimizations performed while
considering a model of the protein environment (ε ) 4), a feature
that could explain the higher MUE obtained for the second case
(0.025 Å vs 0.023 Å).

Conclusions

This study has shown that the gas-phase optimization of single
biological molecules can be a very reasonable alternative to the
optimization of such molecules using the more computational
intensive PCM optimizations, in which the effect of the
environment is partially accounted for through the use of a
continuum dielectric constant. For cases in which the protonation
state of the biological molecule can be reasonably described in
vacuum, gas-phase optimizations of standard biological mol-
ecules, as the 20 amino acids considered in this study, yield
average mean unsigned errors that are at the same level of the
ones obtained in optimizations performed with different PCM
methods for the dielectric constants of water and of a generic
protein environment. In particular, for bond lengths these
differences in MUEs are as low as 0.005 Å in comparison with
the optimizations performed in water, and as 0.002 Å in
comparison with the ones performed in the protein environment.
Also for angles, differences between the two general types of
geometry optimizations yield average differences of less than
1°.

These general trends were maintained between different types
of amino acids, including polar and nonpolar, and charged and
uncharged molecules. Naturally, the difference in accuracy
between gas-phase optimizations and PCM optimizations was
higher in charged amino acids. However, even for these
molecules average MUEs of only 0.020 Å and 2.96° were
obtained. In general, the good performance of gas-phase
optimizations was observed for different bond types particularly
C-C, C-N, and O-H bonds. C-O bonds were the only ones
to reflect a systematic accuracy difference between gas-phase
and PCM optimizations, with the former resulting in average
MUEs three times higher than the latter.

These observations suggest the use of gas-phase-optimized
geometries in first principles computational enzymology, in
which single biological molecules or small active-site biological
models are employed to model enzymatic reactions, with the
effect of the environment being included only through PCM
single point energy calculations. Some caution should however
be taken into consideration when studying systems with
transition state structures for which very significant charge
separation takes place in comparison with the two energy

minima, or which are significantly more polar or electronegative.
For such systems the use of gas-phase-optimized geometries
with PCM single point energy calculations could result in
doubtful activation barriers. The reader is also advised that
although such an approach could be very reasonable for systems
and molecules with dimensions and properties very close to the
ones included in the data set considered in this study, for enzyme
active sites models comprised by several nonconstrained amino
acid residues, and for biological systems that incorporate two
or more charged molecules, or whose structure depends on a
great part of the formation of specific hydrogen bonds, these
differences may be much larger, and PCM optimizations might
need to be employed.

Supporting Information Available: Gas-phase equilibrium
structures of all amino acids in the gas phase and CSD reference
structures. This material is available free of charge via the
Internet at http://pubs.acs.org.
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